

Hardware-Focused Connected and Automated Vehicle (CAV) Research: Experimental Results and Benefit Analysis

ERIC RASK

Center for Transportation Research, Argonne National Laboratory

DOE Annual Merit Review June 20th, 2018

THIS PRESENTATION DOES NOT CONTAIN ANY PROPRIETARY, CONFIDENTIAL, OR OTHERWISE RESTRICTED INFORMATION

OVERVIEW

Timeline

Revised focus on EEMS for FY18

- Project start date: 10/2017
- Project end date: 9/2018
- Percent complete: ~75%

Highlighted Barriers

- Difficulty in sourcing accurate and traceable real-world data
- Rapid evolution of CAV technologies
- Constant advances in technology drive unexpected consequences for CAVs

Budget

- FY17 Funds \$2,000k
 Previous focus on vehicle technology evaluation
- FY18 Funds \$1,000k
 100% DOE Funds

Partners

- Argonne and DOE Vehicle Modeling & Controls Pls
- DOE-SMART consortium researchers
- Illinois Institute of Technology
- HPC-Big Data researchers

RELEVANCE - Fundamental Disruption is Occurring in Transportation

DOE Energy Efficient Mobility System (EEMS) Strategic Goals

STRATEGIC GOAL #1
Develop new tools, techniques, & core capabilities to understand & identify the most important levers to improve the energy productivity of future integrated mobility systems.

STRATEGIC GOAL #2
Identify & support early stage R&D to develop innovative technologies that enable energy efficient future mobility systems.

STRATEGIC GOAL #3
Share research insights, and coordinate and collaborate with stakeholders to support energy efficient local and regional transportation systems.

Supporting DOE's research within the expanded context of vehicle connectivity and automation

- Building upon existing experimental expertise & best-practices
- Providing tractable and robust laboratory data (when applicable)
- Overlaying state-of-the-art vehicle technologies in a CAV context
- Expanding what is possible within an experimental context

APPROACH – FOUR OVERLAPPING RESEARCH THRUSTS

Laboratory Testing

Targeted On-Road & Track
Testing

Collect Realistic, On-road Behavior

Hardware Focused Research

CAVs Enabled Awareness and Sensing Opportunities

APPROACH

High-fidelity data regardless of environment:

- Vehicle-based messages from CAN/diagnostics
- Decoded messages for ACC/related systems
- Cameras (up to 8 time sync'd)
- Direct axle torque measurement
- GPS data @ 5Hz (std.) to 20Hz (supplemental hardware)
- Direct in-line fuel measurement
- Man-in-the-middle capability for further experimentation

FY18 MILESTONES AND PROJECT OVERVIEW

Accomplishments: Energy-Centric CAV Laboratory

Three broad categories of "energy-intelligent" behaviors

1) Location Awareness 2) V2X Communication and coordination 3) In-vehicle technologies

Emulated "Driver" and Controls

- 1) Processed Cycles human driver
 - + Fast, historical crossover
 - Trace following versus "driving"
- 2) Robot driver adapted for CAVs
 - + Adaptable to non-CAVs vehicles
 - + Very repeatable control inputs
 - ? Subject to vehicle pedal mapping/dynamics
- 3) Generalized Man-in-the-Middle
 - + Override traction controls directly
 - + Override other controls (when possible)
 - + Intercept and modify specific signals (lead car)

Emulated "Tractive" Environment

Accomplishments: <u>Energy-Centric</u> CAV Laboratory – Robot Driver Adaptations: Eco-Launch and ACC

Vehicle's ACC was emulated with robotic controls (simulated lead vehicle and gap)

Accomplishments: Tractive Load Measurement during Vehicle Platooning - Proof of Concept

Axle torque sensors can directly measure road-load differences during following

Fixed Distance Results (6.5-7m)

Preliminary Varying Distance Results

Accomplishments: Simplified ACC System Characterization from On-Road Data Collection

Accomplishments: Highlighted Dynamometer Results - ACC Conventional Vehicle Impacts for "Highway" Driving

- Results vary significantly with cycle
- FE changes do not necessarily mirror tractive energy changes
- ACC cycles show fewer shifts
 (Taurus=62%, F-150=56% for RW-Hwy Cycle)
- ACC operation shows expanded topgear utilization (26-29% for RW_Hwy)
- Aggregate engine usage similar, but fewer excursions with ACC

Accomplishments: Highlighted Dynamometer Results - Hybrid vs. Conventional Vehicle Impacts

- Both HEVs show a significant decrease in regen. braking energy (38% Prius, 49% Accord)
- Accord shows a significant increase in EV operation
- Prius shows slight increase in EV operation

Differences in ACC benefit for selected HEVs is a mix of control and architecture

Accomplishments: Preliminary On-Road ACC Analysis and High Fidelity Data Collection (collection on-going)

Accomplishments: CAVs Enabled Awareness Opportunities

 Using just a radar system combined with GPS, many interesting opportunities arise

Supplemental Vehicle Speeds (similar to GPS probe data)

Can Vehicle Radar Estimate Density? (data collection/analysis on-going)

Motionless Objects Easy to Detect with Radar (fuse with imaging to detect object – on-going)

Partners / Collaborators

Argonne Vehicle and Mobility Modeling:

Data & validation support for Autonomie, RoadRunner, SV-Trip, ...

DOE SMART - National Laboratory Partners:

- Primary Participants: ORNL, ANL, INL, LBNL, NRELC
- Coordination with CAVs and other DOE SMART Mobility pillars where/when applicable: AFI, CAVs, MDS, US

University Partners:

Illinois Institute of Technology

DOE HPC-BigData for Mobility Design and Planning

 ANL, LBNL, ORNL, PNNL (not primary data set, but hopefully provide supporting data as needed)

Highlighted Future Research

Laboratory Testing

- Continued refinements/expansion of the emulation layers (perception and environment)
- Tighter integration within DOE M+S toolchain (Autonomie, RoadRunner, ...)
- Evaluation of higher-level automation/coordination strategies

On-Road Testing

 Expanded data collection scope (more vehicles, more locations, more technologies)

Targeted On-Road & Track Testing

- Multi-vehicle/mixed-type platoon road-load estimation
- CACC and related strategy impacts for HEVs and BEVs

CAVs Enabled Awareness and Sensing Opportunities

- Opportunities with L3-L4 sensors (i.e. LIDAR, multi camera/radar, etc.)
- Cyber-security implications of advanced sensing and connectivity within the larger EEMS operational environment

Summary

Relevance

 Disruption in transportation will transform how and what DOE instruments, tests, and evaluates to provide insights and support modeling efforts

Approach

- 4 core hardware focused research thrusts (with interactions across)
- Focus on high-fidelity data across all testing environments

Highlighted Accomplishments

- Foundational layer of an energy-centric CAVs laboratory
 - Robot driver provides a flexible and portable interface for evaluation of CAVs driving behaviors
- Modifying existing instrumentation practices may provide critical CAVs data for modeling and validation
- Dynamometer testing of even basic CAV features highlights a range of interesting trends and opportunities for further analysis
- Connectivity combined with location-awareness and emerging vehicle sensing opens a wide range of new possibilities

Technical Back-up Slides

Methodology Considerations: On-Road Data to Fit Simplified ACC Behavior

	MSE	SumABS	Ref.	Ref. + Opt.	MSE-CACC
k1	0.02	0.02	0.23	0.23	-
k2	0.28	0.27	0.07	0.07	-
Ts	1.25	1.18	1.1	1.78	-
AVE SqErr	0.450	0.459	2.460	2.155	0.450
Sum ABS Err	64246	63663	130724	119346	64241

Methodology Considerations: Simplified ACC Fit Driven by Data Collected

$$a_k = k_1(x_{k-1} - x_k - t_{hw}v_k) + k_2(v_{k-1} - v_k)$$

Prius Prime (gap <40m)

	Opt U-40	Std All Data	OptU40 Time + Ref
k1	0.04	0.02	0.23
k2	0.31	0.27	0.07
Ts	1.17	1.18	1.50
Sum ABS Err (<40m gap)	37649	39193	68013

Accord PHEV (gap <40m)

			•
	Opt U-40	Std All Data	OptU40 Time + Ref
k1	0.04	0.02	0.23
k2	0.30	0.24	0.07
Ts	1.19	1.28	1.19
Sum ABS Err (<40m gap)	18869	20883	30099
		•	•

A more formalized methodology (or alternative testing methodology) would improve some of these common issues...

